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1 Upper Bound for Channel Capacity, Perfect Noiseless Feed-
back, and Joint Source Channel Coding

1.1 Upper bound for Shannon’s channel coding theorem

Last time, we were proving Shannon’s channel coding theorem for discrete memoryless
channels. A DMC is given by a probability transition matrix [p(y | x)]x∈X ,y∈Y , where
X ,Y are finite. Shannon’s formulation uses block codes ((en, dn), n ≥ 1), where

en : [Mn]→X n, dn : Y n → [Mn],

where Mn is exponentially growing in n. The “memoryless” part means

p(yn1 | xn1 ) =

n∏
i=1

p(xi, yi).

Definition 1.1. We say communication is possible at rate R if there exist ((en, dn), n ≥
1) such that

P(dn(en(Wn)) 6= Wn)
n→∞−−−→ 0

and

lim inf
n

1

n
logMn ≥ R.

Let
C := max

(p(x),x∈X )
I(X;Y ).

Theorem 1.1 (Shannon’s channel coding theorem).

sup{R : can communicate at rate R} = C.

C is called the Shannon capacity of the channel. Let’s finish the proof.

1



Proof. We have proved achievability: For ε > 0, we can communicate at rate C − ε.
Now we prove the converse. Consider any ((en, dn), n ≥ 1). We have the Markov chain

Wn −Xn
1 − Ŷ n

1 − Ŵn, where Wn ∼ Unif([Mn]), and Ŵn = dn(Y n
1 ). In this notation, the

error probability is p
(n)
e = P(Ŵn 6= Wn); let’s assume p

(n)
e → 0. We will prove that this

implies lim supn
1
nH(Wn) ≤ C as follows.

H(Wn) = H(Wn | Y n
1 ) + I(Wn;Y n

1 )

≤ H(Wn | Y n
1 ) + I(Xn

1 ;Y n
1 )

≤ H(Wn | Ŵn) + I(Xn
1 ;Y n

1 )

Fano’s inequality says that H(Wn | Ŵn) ≤ h(p
(n)
e ) + p

(n)
e log(Mn − 1).

≤ h(p(n)e ) + p(n)e logMn + I(Xn
1 ;Y n

1 )

To deal with the last term, use the chain rule to write

I(Xn
1 ;Y n

1 ) = H(Y n
1 )−H(Y n

1 X
n
1 )

≤
n∑

i=1

H(Yi)−
n∑

i=1

H(Yi | Xn
1 , Y

n
1 )︸ ︷︷ ︸

=H(Yi|Xi)

=

n∑
i=1

H(Yi | Xi)

≤ nC.

Our issue is now that logMn looks like n. We can deal with this by noting that
H(Wn) = logMn on the left. So far, we have that

logMn ≤ h(p(n)e ) + p(n)e logmn + nC.

Hence,

(1− p(n)e )
logMn

n
≤ h(p

(n)
e )

n
+ C.

If p
(n)
e → 0 as n→∞, this implies that lim supn

1
n logMn ≤ C.

1.2 Communication with perfect noiseless feedback

Earlier, we had Xi = en,i(m), where en = (en,1, . . . , en,n) and m ∈ [Mn] is a message.

Definition 1.2. Perfect noiseless feedback is when we have Xi = en,i(m,Y1, . . . , Yi−1).

Theorem 1.2. Perfect noiseless feedback cannot increase the rates at which communication
is possible over a DMC.
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Proof. The achievability at rate C − ε is the same as Shannon’s coding theorem, since the
encoder can ignore the feedback. But for the converse, we do not have a Markov chain. As
before, write

logMn = H(Wn)

= H(Wn | Y n
1 ) + I(W ;Y n

1 )

≤ h(p(n)e ) + p(n)e logMn,

where p
(n)
e := P (dn(Y n

1 ) 6= Wn). Note that we can still use Fano’s inequality because we

have the Markov chain Wn − Y n
1 − Ŵn. Here, Yi conditioned on (Xi−1

1 , Y i−1
1 , Xi = xi) has

the law p(yi | xi). Observe that p(m,xn1 , y
n
1 ) = 1

Mn

∏n
i=1 1{xi=ei(m,yi−1

1 )}p(yi | xi).
The chain rule gives

I(Wn, Y
n
1 ) = H(Y n

1 )−H(Y n
1 |Wn)

≤
n∑

i=1

H(Yi)−
n∑

i=1

H(Yi |Wn, Y
i−1
1 )

But Xi = en,i(Wn, Y
i−1
1 ), so H(Yi |Wn, Y

i−1) = H(Yi | Xn, Y
i−1
1 , Xi) = H(Yi, Xi). So

I(Wn, Y
n
1 ) ≤ nC,

and the rest of the proof proceeds as before.

1.3 Joint source channel coding

Model a source as a random sequence (Vk, k ∈ Z) (think stationary and ergodic) with
Vk ∈ V , where V is finite.

Definition 1.3. A source channel code at block length n is an encoding map

en : V `n →X n

and a decoding map
dn : Y n → V `n .

Note that `n might be different from n. Here, Y n
1 results from Xn

1 over a DMC.

V `n
1 X n

1 Y n
1 V `n

1 .
en DMC dn

Theorem 1.3 (Joint source channel coding theorem). If the source has entropy rate H(V ),
then there exists ((en, dn), n ≥ 1) with P(dn(en(V `n

1 )) 6= V `n
1 )→ 0 if and only if

lim sup
n

`nH(V )

nC
≤ 1.
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Proof. Achievability: The idea is to compress the source and then use Shannon’s channel
coding theorem. Take `n = n. If H(V )/C ≤ 1− δ, we can compress V n

1 to n(H(V ) + δ/2)
bits with probability going to 0 as n → ∞. Then send those bits over a DMC with error
probability going to 0.

Converse: We have the Markov chain

V `n
1 −X

n
1 − Y n

1 − V̂
`n
1 ,

so Fano’s inequality gives

H(V `n
1 | V̂

`n
1 ) ≤ 1 + P (n)

e (`n log |V |).

We then have

H(V n
1 ) = H(V `n

1 | V̂
`n
1 ) + I(V `n

1 ; V̂ `n
1 )

≤ 1 + p(n)e (`n log |V |) + I(Xn
1 ;Y n

1 )

≤ 1 + p(n)e (`n log |V |) + nC.

Divide by `n and let n → ∞ (we can assume without loss of generality that `n → ∞,
otherwise we automatically have the limsup bounded by 1). We get

H(V `n
1 )

`n
≤ 1

`n
+ p(n)e log |V |+ nC

`n
.

The left hand side converges to H(V ). The first term on the right goes to 0 because

`n →∞. The second term on the right goes to 0 because p
(n)
e → 0 by assumption.
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